Trie and Fast Walsh–Hadamard transform algorithm

LeetCode 1803. Count Pairs With XOR in a Range

Jimmy (xiaoke) Shen
2 min readMar 24, 2021

This is the fourth problem of the weekly contest of March 21, 2021. It is pretty hard. Most people are using Trie to solve this problem. One of the pretty good articles can be found from [1].

The code here is from [1]. See [1] for more explanation.

const int LEVEL = 16; // 1 <= nums[i] <= 20000

struct TrieNode {
TrieNode *child[2]; // Stores binary represention of numbers
int cnt; // Stores count of elements present in a node
TrieNode() {
child[0] = child[1] = NULL;
cnt = 0;
}
};


// Function to insert a number into Trie
void insertTrie(TrieNode *root, int n) {
// Traverse binary representation of X
for (int i = LEVEL; i >= 0; i--) {
// Stores ith bit of N
bool x = (n) & (1 << i);
// Check if an element already present in Trie having ith bit x
if(!root->child[x]) {
// Create a new node of Trie.
root->child[x] = new TrieNode();
}
// Update count of elements whose ith bit is x
root->child[x]->cnt += 1;

//Go to next level
root = root->child[x];
}
}


class Solution {
private:
// Count elements in Trie whose XOR with N less than K
int countSmallerPairs(TrieNode * root, int N, int K) {
// Stores count of elements whose XOR with N less than K
int cntPairs = 0;
// Traverse binary representation of N and K in Trie
for (int i = LEVEL; i >= 0 && root; i--) {
bool x = N & (1 << i); // Stores ith bit of N
bool y = K & (1 << i); // Stores ith bit of K

// If the ith bit of K is 0
if (y == 0 ) {
// find the number which bit is same as N
// so that they can be xored to ZERO
root = root->child[x];
continue;
}
// If the ith bit of K is 1
// If an element already present in Trie having ith bit (x)
if(root->child[x]) {
// find the number which bit is same as N
// so that they can be xored to ZERO. so it would be smaller than K
cntPairs += root->child[x]->cnt;
}
//go to another way for next bit count
root = root->child[1 - x];
}
return cntPairs;
}
public:
int countPairs(vector<int>& nums, int low, int high) {

TrieNode* root = new TrieNode();

int cnt = 0;
for (auto& num : nums) {
cnt += countSmallerPairs(root, num, high + 1) - countSmallerPairs(root, num, low);
insertTrie(root, num);
}


return cnt;
}
};

Aoxiang cui is using another algorithm from the video. It is Fast Walsh–Hadamard transform.

It is pretty interesting to know that we can use different ways to solve a same problem.

--

--

No responses yet