Math is fun

1390. Four Divisors

Jimmy (xiaoke) Shen
2 min readMar 23, 2020

Straight forward

class Solution:
def sumFourDivisors(self, nums: List[int]) -> int:
res = 0
for n in nums:
divisors = {1,n}
for k in range(2, int(n**0.5)+1):
if n%k==0:
divisors.add(k)
divisors.add(n//k)
if len(divisors)>4:break
else:
if len(divisors)==4:res+=sum(divisors)
return res

By using the Sieve of Eratosthenes algorithm to list all the prime numbers between 2 to N.

Since the Sieve of Eratosthenes algorithm has a complexity of O(n), this solutions has the complexity of O(N+M+K²) where N = max(nums), M=len(nums), K is len(primes)

then we can get all the numbers which have exactly 4 divisors. they are

case a: 1, p,p*p, p*p*p

case b:1, p, q, p*q

class Solution:
def sumFourDivisors(self, nums: List[int]) -> int:
N = max(nums)
four_div = [False] * (N + 1)
#four_distinct_factors_sums
sums = [0]*(N+1)

def sieve_of_eratosthenes():
is_prime = [True] * (N + 1)
p = 2
while p * p <= N:
if is_prime[p]:
i = p + p
while i <= N:
is_prime[i] = False
i += p
p += 1
return [p for p in range(2, N+1) if is_prime[p]]

def update_four_distinct_factors_sums():
primes = sieve_of_eratosthenes()
for i, p in enumerate(primes):
#case a: 1, p,p*p, p*p*p
case1 = p**3
if (case1 <= N):
four_div[case1] = True;
sums[case1] = 1+p+p**2+case1
#case b:1, p, q, p*q
for j in range(i + 1, len(primes)):
q = primes[j]
case2 = p*q
if (case2 > N):break
four_div[case2] = True
sums[case2] = 1+p+q+case2
update_four_distinct_factors_sums()
return sum(sums[n] for n in nums if four_div[n])

--

--

No responses yet