LIS
895. 最长上升子序列
4 min readDec 24, 2020
#include<iostream>
using namespace std;
int v[1010];
int dp[1010];
int main() {
int N;
cin >> N;
for (int i = 0; i < N; ++i) {
cin >> v[i];
dp[i] = 1;
}
for (int i = 1; i < N; ++i) {
for (int j = 0; j < i; ++j) {
if (v[j] < v[i]) dp[i] = max(dp[i], dp[j] + 1);
}
}
int ret = 1;
for (int i = 0; i < N; ++i) ret = max(ret, dp[i]);
cout << ret << endl;
return 0;
}
896. 最长上升子序列 II
O(n log k)
#include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int>v(N);
for (int i = 0; i < N; ++i) cin >> v[i];
vector<int> lis;
for (int i = 0; i < N; ++i) {
auto it = lower_bound(lis.begin(), lis.end(), v[i]);
if (it == lis.end()) {
lis.push_back(v[i]);
} else {
// lis[it - lis.begin()] = v[i];
*it = v[i];
}
}
cout << lis.size() << endl;
return 0;
}
LICS
O(n³) solution got TLE
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 3010;
int f[N][N];
int a[N];
int b[N];int main() {
int n;
scanf("%d", &n);
for (int i = 0; i < n; ++i) scanf("%d", &a[i]);
for (int i = 0; i < n; ++i) scanf("%d", &b[i]);
int ret = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
f[i][j] = f[i-1][j];
if (a[i] == b[j]) {
int maxv = 1;
for (int k = 0; k < j; ++k) {
if (b[k] < b[j]) {
maxv = max(maxv, f[i-1][k] + 1);
}
}
f[i][j] = max(f[i][j], maxv);
ret = max(ret, f[i][j]);
}
}
}
printf("%d\n", ret);
return 0;
}
Improved O(n²)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 3010;
int f[N][N];
int a[N];
int b[N];
int main() {
int n;
scanf("%d", &n);
for (int i = 0; i < n; ++i) scanf("%d", &a[i]);
for (int i = 0; i < n; ++i) scanf("%d", &b[i]);
for (int i = 1; i <= n; ++i) {
int maxv = 1;
for (int j = 1; j <= n; ++j) {
f[i][j] = f[i-1][j];
if (a[i] == b[j]) f[i][j] = max(f[i][j], maxv);
if (b[j] < a[i]) maxv = max(maxv, f[i-1][j] + 1);
}
}
int ret = 0;
for (int j = 1; j <= n; ++j) ret = max(ret, f[n][j]);
printf("%d\n", ret);
return 0;
}